Linear Regression

DATA 606 - Statistics & Probability for Data Analytics

Jason Bryer, Ph.D. and Angela Lui, Ph.D.

October 25, 2023

Announcements

Project Presentations

You can sign up for a presentation slot on this Google Sheet. Please do so ASAP.

New York Open Statistical Programming Meetup: Visual Introduction to Propensity Score Analysis. November 14, 6:00pm at NYU. Go here for more info and to register: https://www.meetup.com/nyhackr/events/296951868

One Minute Paper Results

What was the most important thing you learned during this class?

What important question remains unanswered for you?

hypothesis used variance questions anova within sign use can o unanswered can null do state null do

SAT Scores

We will use the SAT data for 162 students which includes their verbal and math scores. We will model math from verbal. Recall that the linear model can be expressed as:

y = mx + b

Or alternatively as:

 $y = b_1 x + b_0$

Where m (or b_1) is the slope and b (or b_0) is the intercept. Therefore, we wish to model:

 $SAT_{math} = b_1 SAT_{verbal} + b_0$

Data Prep

To begin, we read in the CSV file and convert the verbal and Math columns to integers. The data file uses . (i.e. a period) to denote missing values. The as.integer function will automatically convert those to NA (the indicator for a missing value in R). Finally, we use the complete.cases eliminate any rows with any missing values.

```
sat <- read.csv('../course_data/SAT_scores.csv', stringsAsFactors=FALSE)
names(sat) <- c('Verbal','Math','Sex')
sat$Verbal <- as.integer(sat$Verbal)
sat$Math <- as.integer(sat$Math)
sat <- sat[complete.cases(sat),]</pre>
```


Scatter Plot

The first step is to draw a scatter plot. We see that the relationship appears to be fairly linear.

Descriptive Statistics

Next, we will calculate the means and standard deviations.

```
( verbalMean <- mean(sat$Verbal) )</pre>
```

[1] 596.2963

```
( mathMean <- mean(sat$Math) )</pre>
```

[1] 612.0988

(verbalSD <- sd(sat\$Verbal))
[1] 99.5199
(mathSD <- sd(sat\$Math))
[1] 98.13435
(n <- nrow(sat))
[1] 162

Correlation

The population correlation, rho, is defined as $\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$ where the numerator is the *covariance* of x and y and the denominator is the product of the two standard deviations.

The sample correlation is calculated as $r_{xy} = rac{Cov_{xy}}{s_x s_y}$

The covariates is calculated as $Cov_{xy} = rac{\sum_{i=1}^n \left(X_i - \overline{X}\right) \left(Y_i - \overline{Y}\right)}{n-1}$

(cov.xy <- sum((sat\$Verbal - verbalMean) * (sat\$Math - mathMean)) / (n - 1))</pre>

[1] 6686.082

cov(sat\$Verbal, sat\$Math)

[1] 6686.082

Correlation (cont.)

$$r_{xy} = rac{\sum_{i=1}^n ig(X_i - \overline{X}ig)ig(Y_i - \overline{Y}ig)}{n-1}}{s_x s_y}$$

cov.xy / (verbalSD * mathSD)	
## [1] 0.6846061	
cor(sat\$Verbal, sat\$Math)	
## [1] 0.6846061	

http://bcdudek.net/rectangles

z-Scores

Calcualte z-scores (standard scores) for the verbal and math scores.

$$z=rac{y-\overline{y}}{s}$$

sat\$Verbal.z <- (sat\$Verbal - verbalMean) / verbalSD sat\$Math.z <- (sat\$Math - mathMean) / mathSD head(sat)

##		Verbal	Math	Sex	Verbal.z	Math.z
##	1	450	450	F	-1.47002058	-1.65180456
##	2	640	540	F	0.43914539	-0.73469449
##	3	590	570	М	-0.06326671	-0.42899113
##	4	400	400	М	-1.97243268	-2.16131016
##	5	600	590	М	0.03721571	-0.22518889
##	6	610	610	М	0.13769813	-0.02138665

Scatter Plot of z-Scores

Scatter plot of z-scores. Note that the pattern is the same but the scales on the x- and y-axes are different.

Correlation

Calculate the correlation manually using the z-score formula:

$$r=rac{\sum z_x z_y}{n-1}$$

```
r <- sum( sat$Verbal.z * sat$Math.z ) / ( n - 1 )
r
```

[1] 0.6846061

Or the cor function in R is probably simplier.

cor(sat\$Verbal, sat\$Math)

[1] 0.6846061

And to show that the units don't matter, calculate the correlation with the z-scores.

cor(sat\$Verbal.z, sat\$Math.z)

[1] 0.6846061

Calculate the slope.

$$m=rrac{S_y}{S_x}=rrac{S_{math}}{S_{verbal}}$$

m <- r * (mathSD / verbalSD)
m
[1] 0.6750748</pre>

Calculate the intercept

Recall that the point where the mean of x and mean of y intersect will be on the line of best fit). Therefore,

$$b = \overline{y} - m\overline{x} = \overline{SAT_{math}} - m\overline{SAT_{verbal}}$$

b <- mathMean - m * verbalMean b

[1] 209.5542

Scatter Plot with Regression Line

We can now add the regression line to the scatter plot. The vertical and horizontal lines represent the mean Verbal and Math SAT scores, respectively.

Examine the Residuals

To examine the residuals, we first need to calculate the predicted values of y (Math scores in this example).

```
sat$Math.predicted <- m * sat$Verbal + b
sat$Math.predicted.z <- m * sat$Verbal.z + 0
head(sat, n=4)</pre>
```

##		Verbal	Math	Sex	Verbal.z	Math.z	Math.predicted	Math.predicted.z
##	1	450	450	F	-1.47002058	-1.6518046	513.3378	-0.99237384
##	2	640	540	F	0.43914539	-0.7346945	641.6020	0.29645598
##	3	590	570	М	-0.06326671	-0.4289911	607.8483	-0.04270976
##	4	400	400	М	-1.97243268	-2.1613102	479.5841	-1.33153958

Examine the Residuals (cont.)

The residuals are simply the difference between the observed and predicted values.

sat\$residual <- sat\$Math - sat\$Math.predicted
sat\$residual.z <- sat\$Math.z - sat\$Math.predicted.z
head(sat, n=4)</pre>

##		Verbal	Math	Sex	Verbal.z	Math.z	Math.predicted	Math.predicted.z	residual	residual.z
##	1	450	450	F	-1.47002058	-1.6518046	513.3378	-0.99237384	-63.33782	-0.6594307
##	2	640	540	F	0.43914539	-0.7346945	641.6020	0.29645598	-101.60203	-1.0311505
##	3	590	570	М	-0.06326671	-0.4289911	607.8483	-0.04270976	-37.84829	-0.3862814
##	4	400	400	М	-1.97243268	-2.1613102	479.5841	-1.33153958	-79.58408	-0.8297706

Scatter Plot with Residuals

Plot our regression line with lines representing the residuals. The line of best fit minimizes the residuals.

Scatter Plot with Residuals

Using the z-scores ensures that a 1-unit change in the x-axis is the same as a 1-unit change in the y-axis. This makes it easiert to plot the residuals as squares.

Minimizing Sum of Squared Residuals

What does it mean to minimize the sum of squared residuals?

To show that $m = r \frac{S_y}{S_x}$ minimizes the sum of squared residuals, this loop will calculate the sum of squared residuals for varying values of between -1 and 1.

Minimizing the Sum of Squared Residuals

Plot the sum of squared residuals for different slopes (i.e. r's). The vertical line corresponds to the r (slope) calcluated above and the horizontal line corresponds the sum of squared residuals for that r. This should have the smallest sum of squared residuals.

Regression Line with RSS

Example of a "bad" model

To exemplify how the residuals change, the following scatter plot picks one of the "bad" models and plot that regression line with the original, best fitting line. Take particular note how the residuals would be less if they ended on the red line (i.e. the better fitting model). This is particularly evident on the far left and far right, but is true across the entire range of values.

b.bad <- results[1,]\$b
m.bad <- results[1,]\$m
sat\$predicted.bad <- m.bad * sat\$Verbal + b.bad</pre>

Example of a "bad" model

Residual Plot

Next, we'll plot the residuals with the independent variable. In this plot we expect to see no pattern, bending, or clustering if the model fits well. The rug plot on the right and top given an indication of the distribution. Below, we will also examine the histogram of residuals.

ggplot(sat, aes(x=Verbal, y=residual)) + geom_point() + geom_rug(sides='rt')

Scatter and Residual Plot, Together

In an attempt to show the relationship between the predicted value and the residuals, this figures combines both the basic scatter plot with the residuals. Each Math score is connected with the corresponding residual point.

Histogram of residuals

ggplot(sat, aes(x=residual)) + geom_histogram(alpha=.5, binwidth=25)

Calculate R^2

r ^ 2

[1] 0.4686855

This model accounts for 46.9% of the variance math score predicted from verbal score.

Prediction

Now we can predict Math scores from new Verbal.

newX <- 550 (newY <- newX * m + b)

[1] 580.8453

Using R's built in function for linear modeling

The lm function in R will calculate everything above for us in one command.

sat.lm <- lm(Math ~ Verbal, data=sat)
summary(sat.lm)</pre>

```
##
## Call:
## lm(formula = Math ~ Verbal, data = sat)
##
## Residuals:
       Min
                10 Median 30
##
                                         Max
## -173.590 -47.596 1.158 45.086 259.659
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 209.55417 34.34935 6.101 7.66e-09 ***
## Verbal 0.67507 0.05682 11.880 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 71.75 on 160 degrees of freedom
## Multiple R-squared: 0.4687, Adjusted R-squared: 0.4654
## F-statistic: 141.1 on 1 and 160 DF, p-value: < 2.2e-16
```


Predicted Values, Revisited

We can get the predicted values and residuals from the lm function

sat.lm.predicted <- predict(sat.lm)
sat.lm.residuals <- resid(sat.lm)</pre>

Confirm that they are the same as what we calculated above.

head(cb	ind(sat.lm.predicted, sat\$Math.predicted), n=4)	<pre>head(cbind(sat.lm.residuals,</pre>		
## sat	t.lm.predicted	## sat.lm.residuals		
## 1	513.3378 513.3378	## 1 -63.33782 -63.33782		
## 2	641.6020 641.6020	## 2 -101.60203 -101.60203		
## 3	607.8483 607.8483	## 3 -37.84829 -37.84829		
## 4	479.5841 479.5841	## 4 -79.58408 -79.58408		

Residuals - Implications for Grouping Variables

First, let's look at the scatter plot but with a sex indicator.

Residual Plot by Sex

And also the residual plot with an indicator for sex.

Histograms

The histograms also show that the distribution are different across sex.

Grouping Variable

Upon careful examination of these two figures, there is some indication there may be a difference between sexes. In the scatter plot, it appears that there is a cluster of males towoards the top left and a cluster of females towards the right. The residual plot also shows a cluster of males on the upper left of the cluster as well as a cluster of females to the lower right. Perhaps estimating two separate models would be more appropriate.

To start, we create two data frames for each sex.

```
sat.male <- sat[sat$Sex == 'M',]
sat.female <- sat[sat$Sex == 'F',]</pre>
```


Descriptive Statistics

Calculate the mean for Math and Verbal for both males and females.

(male.verbal.mean <- mean(sat.male\$Verbal))
[1] 590.375</pre>

(male.math.mean <- mean(sat.male\$Math))</pre>

[1] 626.875

(female.verbal.mean <- mean(sat.female\$Verbal))</pre>

[1] 602.0732

(female.math.mean <- mean(sat.female\$Math))</pre>

[1] 597.6829

Two Regression Models

Estimate two linear models for each sex.

```
##
## Call:
## Call:
## lm(formula = Math ~ Verbal, data = sat.male)
##
## Coefficients:
## (Intercept) Verbal
## 250.1452 0.6381
```

```
##
## Call:
## lm(formula = Math ~ Verbal, data = sat.female)
##
## Coefficients:
## (Intercept) Verbal
## 158.9965 0.7286
```


Two Regression Models Visualized

We do in fact find that the intercepts and slopes are both fairly different. The figure below adds the regression lines to the scatter plot.

Let's compare the R^2 for the three models.					
cor(sat\$Verbal, sat\$Math) ^ 2					
## [1] 0.4686855					
cor(sat.male\$Verbal, sat.male\$Math) ^ 2	<pre>cor(sat.female\$Verbal, sat.female\$Math) ^ 2</pre>				
## [1] 0.4710744	## [1] 0.5137626				

The R^2 for the full model accounts for approximately 46.9% of the variance. By estimating separate models for each sex we can account for 47.1% and 51.4% of the variance for males and females, respectively.

Examining Possible Outliers

Re-examining the histogram of residuals, there is one data point with a residual higher than the rest. This is a possible outlier. In this section we'll examine how that outlier may impact our linear model.

Possible Outlier

We can extract that record from our data frame. We can also highlight that point on the scatter plot.

sat.outlier <- sat[sat\$residual > 200,]
sat.outlier

 ##
 Verbal Math Sex
 Verbal.z
 Math.z
 Math.predicted Math.predicted.z
 residual.z
 predicted.bad

 ##
 162
 490
 800
 F
 -1.068091
 1.914735
 540.3408
 -0.7210412
 259.6592
 2.635776
 716.9152

Possible Outlier (cont.)

We see that excluding this point changes model slightly. With the outlier included we can account for 45.5% of the variance and by excluding it we can account for 47.9% of the variance. Although excluding this point improves our model, this is an insufficient enough reason to do so. Further explenation is necessary.

```
(sat.lm <- lm(Math ~ Verbal, data=sat))</pre>
                                                                    (sat.lm2 <- lm(Math ~ Verbal,</pre>
                                                                                    data=sat[sat$residual < 200,]))</pre>
##
## Call:
                                                                    ##
  lm(formula = Math ~ Verbal, data = sat)
                                                                    ## Call:
##
                                                                    ## lm(formula = Math ~ Verbal, data = sat[sat$residual
##
## Coefficients:
                                                                    ##
                                                                       Coefficients:
##
   (Intercept)
                      Verbal
                                                                    ##
##
      209.5542
                      0.6751
                                                                    ## (Intercept)
                                                                                          Verbal
                                                                    ##
                                                                          197.4697
                                                                                           0.6926
```


R² with and without the outlier

summary(sat.lm)\$r.squared

[1] 0.4686855

summary(sat.lm2)\$r.squared

[1] 0.5013288

More outliers

For the following two examples, we will add outliers to examine how they would effect our models. In the first example, we will add an outlier that is close to our fitted model (i.e. a small residual) but lies far away from the cluster of points. As we can see below, this single point increases our R^2 by more than 5%.

outX <- 1200
outY <- 1150
sat.outlier <- rbind(sat[,c('Verbal','Math')], c(Verbal=outX, Math=outY))</pre>

Regression Models

```
##
## Call:
## lm(formula = Math ~ Verbal, data = sat)
##
## Coefficients:
## (Intercept) Verbal
##
209.5542 0.6751
```

Call: ## Call: ## lm(formula = Math ~ Verbal, data = sat.outlier) ## ## Coefficients: ## (Intercept) Verbal ## 186.372 0.715

Scatter Plot

summary(sat.lm)\$r.squared
[1] 0.4686855
summary(sat.lm2)\$r.squared
[1] 0.5443222

Outliers

Outliers can have the opposite effect too. In this example, our R^2 is decreased by almost 16%.

outX <- 300
outY <- 1150
sat.outlier <- rbind(sat[,c('Verbal','Math')], c(Verbal=outX, Math=outY))</pre>

(sat.lm2 <- lm(Math ~ Verbal,</pre> (sat.lm <- lm(Math ~ Verbal,</pre> data=sat)) data=sat.outlier)) ## ## ## Call: ## Call: ## lm(formula = Math ~ Verbal, data = sat) ## lm(formula = Math ~ Verbal, data = sat.outlier) ## ## ## Coefficients: ## Coefficients: ## (Intercept) Verbal ## (Intercept) Verbal ## 209.5542 0.6751 ## 290.8915 0.5459

49 / 51

summary(sat.lm)\$r.squared
[1] 0.4686855
summary(sat.lm2)\$r.squared
[1] 0.2726476

Complete the one minute paper: https://forms.gle/ngYXfC6jwY3TV6FXA

1. What was the most important thing you learned during this class?

2. What important question remains unanswered for you?

