Summarizing Data Part 2

DATA 606 - Statistics & Probability for Data Analytics

Jason Bryer, Ph.D. and Angela Lui, Ph.D.

September 13, 2023

Announcements

Due to scheduling conflict, next week's meetup will be on Tuesday, September 19th, at 7:00pm.

One Minute Paper Results

What was the most important thing you learned during this class?

What important question remains unanswered for you?

Grammer of Graphics

Data Visualizations with ggplot2

- ggplot2
- ggplot2 is an R package that provides an alternative framework based upon Wilkinson's (2005) Grammar of Graphics.
- ggplot2 is, in general, more flexible for creating "prettier" and complex plots.
- Works by creating layers of different types of objects/geometries (i.e. bars, points, lines, polygons, etc.) ggplot2 has at least three ways of creating plots:

```
1. qplot
2. ggplot(...) + geom_XXX(...) + ...
3. ggplot(...) + layer(...)
```

• We will focus only on the second.

Parts of a ggplot2 Statement

• Data

```
ggplot(myDataFrame, aes(x=x, y=y))
```

• Layers

```
geom_point(), geom_histogram()
```

• Facets

```
facet_wrap(~ cut), facet_grid(~ cut)
```

• Scales

```
scale_y_log10()
```

• Other options

ggtitle('my title'), ylim(c(0, 10000)), xlab('x-axis label')

Lots of geoms

ls('package:ggplot2')[grep('^geom_', ls('package:ggplot2'))]

##	[1]	"geom_abline"	"geom_area"
##	[4]	"geom_bin_2d"	"geom_bin2d"
##	[7]	"geom_boxplot"	"geom_col"
##	[10]	"geom_contour_filled"	"geom_count"
##	[13]	"geom_curve"	"geom_densit
##	[16]	"geom_density_2d_filled"	"geom_densit
##	[19]	"geom_dotplot"	"geom_errorb
##	[22]	"geom_freqpoly"	"geom_functi
##	[25]	"geom_histogram"	"geom_hline"
##	[28]	"geom_label"	"geom_line"
##	[31]	"geom_map"	"geom_path"
##	[34]	"geom_pointrange"	"geom_polygo
##	[37]	"geom_qq_line"	"geom_quanti
##	[40]	"geom_rect"	"geom_ribbon
##	[43]	"geom_segment"	"geom_sf"
##	[46]	"geom_sf_text"	"geom_smooth
##	[49]	"geom_step"	"geom_text"
##	[52]	"geom_violin"	"geom_vline"

geom_area" geom_bin2d" geom_col" geom_count" geom_density" geom_density2d" geom_errorbar" geom_function" geom_hline" geom_line" geom_path" geom_polygon" geom_quantile" geom_ribbon" geom sf" geom_smooth" geom_text"

"geom_bar" "geom_blank" "geom_contour" "geom_crossbar" "geom_density_2d" "geom_density2d_filled" "geom_errorbarh" "geom_hex" "geom_jitter" "geom_linerange" "geom point" "geom_qq" "geom_raster" "geom_rug" "geom_sf_label" "geom_spoke" "geom_tile"

Data Visualization Cheat Sheet

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system and geoms-visual marks that represent data points

To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and v locations.

Complete the template below to build a graph.

Trequired ggplot (data = (DATA>) + <GEOM FUNCTION>(mapping = aes(<MAPPINGS> stat = <STAT>, position = <POSITION>) + <COORDINATE_FUNCTION>+ <FACET_FUNCTION> + <SCALE_FUNCTION> <THEME FUNCTION>

ggplot(data = mpg, aes(x = cty, y = hwy)) Begins a plot that you finish by adding layers to. Add one geom function per laver.

aesthetic mappings data geom **qplot**(x = cty, y = hwy, data = mpg, geom = "point") Creates a complete plot with given data, geom, and mappings. Supplies many useful defaults.

last plot() Returns the last plot

ggsave("plot.png", width = 5, height = 5) Saves last plot as 5' x 5' file named "plot.png" in working directory. Matches file type to file extension.

Geoms Use a geom function to represent data points, use the geom's aesthetic properties to represent variables.

TWO VARIARI ES

GRAPHICAL PRIMITIVES

a <- ggplot(economics, aes(date, unemploy)) b <- ggplot(seals, aes(x = long, y = lat))

- a + geom_blank() (Useful for expanding limits)
- b + geom_curve(aes(yend = lat + 1,
- xend=long+1,curvature=z)) x, xend, y, yend, alpha, angle, color, curvature, linetype, size a + geom_path(lineend="butt", linejoin="round".
- x, y, alpha, color, group, linetype, size
- a + geom_polygon(aes(group = group))
 x, y, alpha, color, fill, group, linetype, size

b + geom_rect(aes(xmin = long, ymin=lat, xmax= long + 1, ymax = lat + 1)) - xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size

a + geom_ribbon(aes(ymin=unemploy - 900, ymax=unemploy + 900)) - x, ymax, ymin, alpha, color, fill, group, linetype, size

LINE SEGMENTS common aesthetics: x, y, alpha, color, linetype, size

b + geom_abline(aes(intercept=0, slope=1)) b + geom_hline(aes(yintercept = lat)) _ b + geom_vline(aes(xintercept = long))

b + geom_segment(aes(yend=lat+1, xend=long+1)) b + geom_spoke(aes(angle = 1:1155, radius = 1))

ONE VARIABLE continuous c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

- + geom_area(stat = "bin") v. alpha, color, fill, linetype, size
- c + geom_density(kernel = "gaussian")
 x, y, alpha, color, fill, group, linetype, size, weight
- c + geom_dotplot(..... x, y, alpha, color, fil
- c + geom_freqpoly() x, y, alpha, color, group,
- c + geom_histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight
- color, fill, linetype, size, weight
- discrete
- 11

- continuous x . continuous v e <- ggplot(mpg, aes(cty, hwy)) e + geom_label(aes/(abel = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE) x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust Br
 - e + geom_jitter(height = 2, width = 2) x, y, alpha, color, fill, shape, size
 - e + geom_point(), x, y, alpha, color, fill, shape,
 - e + geom_quantile(), x, y, alpha, color, group, linetype, size, weight
 - e + geom_rug(sides = "bl"), x, y, alpha, color, linetype, size
 - e + geom_smooth(method = lm), x, y, alpha, color, fill, group, linetype, size, weight
 - e+geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1, check_overlap = TRUE), x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust
- discrete x, continuous y f <- ggplot(mpg, aes(class, hwy))
- f+geom_col(), x, y, alpha, color, fill, group, linetype, size
- f+geom_boxplot(), x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, size, weight
- f + geom_dotplot(binaxis = "y", stackdir = "center"), x, y, alpha, color, fill, group
- f + geom_violin(scale = "area"), x, y, alpha, color,

fill, group, linetype, size, weigh

- 🔹 🍯 size, stroke
- c2 + geom_qq(aes(sample = hwy)) x, y, alpha.
- d <- ggplot(mpg, aes(fl))
 - d + geom_bar() x, alpha, color, fill, linetype, size, weight

- l+geom_raster(aes(fill = z), hjust=0.5, vjust=0.5, interpolate=FALSE) x, y, alpha, fill
 - I + geom_tile(aes(fill = z)), x, y, alpha, color, fill, linetype, size, width
- RStudio* is a trademark of RStudio, Inc. CC BY SA RStudio info@rstudio.com 844-448-1212 rstudio.com Learn more at http://ggplot2.tidyverse.org ggplot2 2.1.0 Updated: 2016-11

continuous bivariate distribution

h <- ggplot(diamonds, aes(carat, price))

h + geom_bin2d(binwidth = c(0.25, 500))

ggplot2

- y, alpha, color, fill, linetype, size, weight
- h + geom_density2d() x, y, alpha, colour, group, linetype, size
- h + geom_hex() x, y, alpha, colour, fill, size
- continuous function i <- ggplot(economics, aes(date, unemploy))
- i + geom area() x, y, alpha, color, fill, linetype, size
 - i + geom_line() x, y, alpha, color, group, linetype, size
- i + geom_step(direction = "hv") x, y, alpha, color, group, linetype, size

visualizing error df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2) j <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))

j + geom_crossbar(fatten = 2)
x, y, ymax, ymin, alpha, color, fill, group, linetype,

j + geom_errorbar(), x, ymax, ymin, alpha, color, group, linetype, size, width (also geom_errorbarh())

- i + geom linerange() x, ymin, ymax, alpha, color, group, linetype, size
- j + geom_pointrange() x, y, ymin, ymax, alpha, color, fill, group, linetype, shape, size

maps data <- data.frame(murder = USArrests\$Murder, state = tolower(rownames(USArrests))) map <- map_data("state") k <- ggplot(data, aes(fill = murder))

k + geom_map(aes(map_id = state), map = map) + expand_limits(x = map\$long, y = map\$lat), map_id, alpha, color, fill, linetype, size

THREE VARIABLES

size, weight

seals\$z <- with(seals, sqrt(delta_long^2 + delta_lat^2))l <- ggplot(seals, aes(long, lat))

l + geom_contour(aes(z = z)) x, y, z, alpha, colour, group, linetype

discrete x . discrete v g <- ggplot(diamonds, aes(cut, color))

g + geom_count(), x, y, alpha, color, fill, shape,

Scatterplot

ggplot(legosets, aes(x=pieces, y=US_retailPrice)) + geom_point()

Scatterplot (cont.)

ggplot(legosets, aes(x=pieces, y=US_retailPrice, color=availability)) + geom_point()

Scatterplot (cont.)

ggplot(legosets, aes(x=pieces, y=US_retailPrice, size=minifigs, color=availability)) + geom_point()

Scatterplot (cont.)

ggplot(legosets, aes(x=pieces, y=US_retailPrice, size=minifigs)) + geom_point() + facet_wrap(~ availability)

Boxplots

ggplot(legosets, aes(x='Lego', y=US_retailPrice)) + geom_boxplot()

Boxplots (cont.)

ggplot(legosets, aes(x=availability, y=US_retailPrice)) + geom_boxplot()

Boxplot (cont.)

ggplot(legosets, aes(x=availability, y=US_retailPrice)) + geom_boxplot() + coord_flip()

Histograms

ggplot(legosets, aes(x = US_retailPrice)) + geom_histogram()

Histograms (cont.)

ggplot(legosets, aes(x = US_retailPrice)) + geom_histogram() + scale_x_log10()

Histograms (cont.)

ggplot(legosets, aes(x = US_retailPrice)) + geom_histogram() + facet_wrap(~ availability)

Density Plots

ggplot(legosets, aes(x = US_retailPrice, color = availability)) + geom_density()

ggplot2 aesthetics

usually must be inside aes()
 can be inside aes()
 must be outside aes()

idea and design: Christian Burkhart design advice: Ida Aarnio

Likert Scales

Likert scales are a type of questionnaire where respondents are asked to rate items on scales usually ranging from four to seven levels (e.g. strongly disagree to strongly agree).

```
library(likert)
library(reshape)
data(pisaitems)
items24 <- pisaitems[,substr(names(pisaitems), 1,5) == 'ST240']</pre>
items24 <- rename(items24, c(</pre>
            ST24001="I read only if I have to.",
            ST24Q02="Reading is one of my favorite hobbies.",
            ST24Q03="I like talking about books with other people.",
            ST24Q04="I find it hard to finish books.",
            ST24005="I feel happy if I receive a book as a present.",
            ST24006="For me, reading is a waste of time.",
            ST24007="I enjoy going to a bookstore or a library.",
            ST24Q08="I read only to get information that I need.",
            ST24009="I cannot sit still and read for more than a few minutes.",
            ST24010="I like to express my opinions about books I have read.",
            ST24Q11="I like to exchange books with my friends."))
```


likert R Package

11 44.45885 2.343193 0.9609234

2 43.35530 2.344530 0.9277495

l24 <- likert(items24)
summary(l24)</pre>

##			Item	low	neutral
##	10	I like	to express my opinions about books I have read.	41.07516	\odot
##	5		I feel happy if I receive a book as a present.	46.93475	\odot
##	8		I read only to get information that I need.	50.39874	\odot
##	7		I enjoy going to a bookstore or a library.	51.21231	\odot
##	3		I like talking about books with other people.	54.99129	\odot
##	11		I like to exchange books with my friends.	55.54115	\odot
##	2		Reading is one of my favorite hobbies.	56.64470	\odot
##	1		I read only if I have to.	58.72868	\odot
##	4		I find it hard to finish books.	65.35125	\odot
##	9	I cannot	sit still and read for more than a few minutes.	76.24524	\odot
##	6		For me, reading is a waste of time.	82.88729	\odot
##		high	mean sd		
##	10	58.92484	2.604913 0.9009968		
##	5	53.06525	2.466751 0.9446590		
##	8	49.60126	2.484616 0.9089688		
##	7	48.78769	2.428508 0.9164136		
##	3	45.00871	2.328049 0.9090326		

likert Plots

plot(l24)

likert Plots

plot(l24, type='heat')

Reading is one of my favorite hobbies.	2.34 (0.93)	20.3%	36.3%	31.9%	11.4%	
I read only to get information that I need.	2.48 (0.91)	15.0%	35.4%	35.8%	13.8%	
I read only if I have to.	2.29 (0.94)	22.8%	35.9%	30.5%	10.7%	
like to express my opinions about books I have read.	2.60 (0.90)	13.5%	27.5%	43.8%	15.1%	
I like to exchange books with my friends.	2.34 (0.96)	22.5%	33.0%	32.1%	12.4%	Pe
I like talking about books with other people.	2.33 (0.91)	21.2%	33.7%	36.0%	9.0%	
I find it hard to finish books.	2.18 (0.90)	25.0%	40.4%	26.5%	8.1%	
I feel happy if I receive a book as a present.	2.47 (0.94)	19.3%	27.7%	40.2%	12.9%	
I enjoy going to a bookstore or a library.	2.43 (0.92)	17.8%	33.4%	36.9%	11.9%	
I cannot sit still and read for more than a few minutes.	1.97 (0.88)	33.1%	43.1%	16.9%	6.8%	
For me, reading is a waste of time.	1.81 (0.86)	42.2%	40.6%	11.0%	6.1%	
	Mean (SD) St	tronaly disaare	e Disagree	Agree	Strongly agree	

likert Plots

plot(l24, type='density')

Pie Charts

There is only one pie chart in *OpenIntro Statistics* (Diez, Barr, & Çetinkaya-Rundel, 2015, p. 48). Consider the following three pie charts that represent the preference of five different colors. Is there a difference between the three pie charts? This is probably a difficult to answer.

Pie Charts

There is only one pie chart in *OpenIntro Statistics* (Diez, Barr, & Çetinkaya-Rundel, 2015, p. 48). Consider the following three pie charts that represent the preference of five different colors. Is there a difference between the three pie charts? This is probably a difficult to answer.

Source: https://en.wikipedia.org/wiki/Pie_chart.

"There is no data that can be displayed in a pie chart that cannot better be displayed in some other type of chart"

John Tukey

Additional Resources

For data wrangling:

- dplyr website: https://dplyr.tidyverse.org
- R for Data Science book: https://r4ds.had.co.nz/wrangle-intro.html
- Wrangling penguins tutorial: https://allisonhorst.shinyapps.io/dplyr-learnr/#section-welcome
- Data transformation cheat sheet: https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf

For data visualization:

- ggplot2 website: https://ggplot2.tidyverse.org
- R for Data Science book: https://r4ds.had.co.nz/data-visualisation.html
- R Graphics Cookbook: https://r-graphics.org
- Data visualization cheat sheet: https://github.com/rstudio/cheatsheets/raw/master/data-visualization-2.1.pdf

One Minute Paper

Complete the one minute paper: https://forms.gle/ngYXfC6jwY3TV6FXA

1. What was the most important thing you learned during this class?

2. What important question remains unanswered for you?

